Last updated: 2021-02-19

Checks: 6 1

Knit directory: Human_Development_ATACseq_bulk/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210216) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/GITHUB/Human_Development_ATACseq_bulk/output/humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.hum.fix_filt.csv output/humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.hum.fix_filt.csv
/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/GITHUB/Human_Development_ATACseq_bulk/output/ATACseq_samplesheet.txt output/ATACseq_samplesheet.txt

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 294d830. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  *.noXYMT.bed.tidy.bed
    Untracked:  *xls.bg.bed
    Untracked:  *xls.dn.bed
    Untracked:  *xls.up.bed
    Untracked:  Development_noXY.jn.rnk
    Untracked:  FetalvsYoung_noXY.jn.rnk
    Untracked:  Homo_sapiens.GRCh38.96.fulllength.saf
    Untracked:  YoungvsAdult_noXY.jn.rnk
    Untracked:  analysis/*.dn.bed.homeranno.txt
    Untracked:  analysis/*.up.bed.homeranno.txt
    Untracked:  analysis/00.WorkFlowR_setting.R
    Untracked:  code/EnDrich.R
    Untracked:  code/EnDrichProc_Development_noXY.R
    Untracked:  code/EnDrichProc_FetalvsYoung_noXY.R
    Untracked:  code/EnDrichProc_YoungvsAdult_noXY.R
    Untracked:  header.sam
    Untracked:  humanATAC*bed.saf
    Untracked:  humanATAC*bed.saf.pe.q30.mx
    Untracked:  humanATAC*bed.saf.pe.q30.mx.all
    Untracked:  humanATAC*bed.saf.pe.q30.mx.all.fix
    Untracked:  humanATAC*bed.saf.pe.q30.mx.chr
    Untracked:  humanATAC*bed.saf.pe.q30.mx.fix
    Untracked:  humanATAC*bed.saf.pe.q30.mx.hum.fix
    Untracked:  output/20190801_ATAC_samplesheet.txt
    Untracked:  output/ATACseq_samplesheet.txt
    Untracked:  output/atac_hum_tss_pe_mapk30_q30.mx.all_unfiltered.csv
    Untracked:  output/atac_hum_tss_pe_mapk30_q30.mx.chr
    Untracked:  output/atac_hum_tss_pe_mapk30_q30.mx.hum.fix_filt.csv
    Untracked:  output/humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.MvsF.fix_filt.csv
    Untracked:  output/humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.all.fix_filt.csv
    Untracked:  output/humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.all_unfiltered.csv
    Untracked:  output/humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.hum.fix_filt.csv
    Untracked:  output/logCPM_humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.all.fix_filt.csv

Unstaged changes:
    Modified:   analysis/about.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/license.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/07.EdgeR_and_ScatterPlot_Peaks_FvsM.Rmd) and HTML (docs/07.EdgeR_and_ScatterPlot_Peaks_FvsM.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 294d830 evangelynsim 2021-02-19 wflow_publish(c(“analysis/01.Generate_reference_genome.Rmd”,

Introduction

In the GEO submission, 4 processed files (peaks) were uploaded.

  1. humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.all_unfiltered.csv
  2. humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.all.fix_filt.csv
  3. humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.hum.fix_filt.csv
  4. humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.MvsF.fix_filt.csv

They have been uploaded in the /output folder and will be used below to generate different figures.

Used libraries and functions

  • bedtools/2.27.1
  • Homer
library(edgeR)
Loading required package: limma
library(limma)
library(dplyr)

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union
library(ggplot2)
library(moonBook)
library(webr)
library(waffle)
library(extrafont)
Registering fonts with R
library(grid)
library(gridExtra)

Attaching package: 'gridExtra'
The following object is masked from 'package:dplyr':

    combine
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************
library(ggpubr)

Attaching package: 'ggpubr'
The following object is masked from 'package:cowplot':

    get_legend
library(RColorBrewer)

Read files

PRIOR = 20
FDR = 0.05

rm1 <- read.csv("/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/GITHUB/Human_Development_ATACseq_bulk/output/humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.hum.fix_filt.csv", row.names = 1)

info = read.delim("/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/GITHUB/Human_Development_ATACseq_bulk/output/ATACseq_samplesheet.txt", header = TRUE, sep = "\t", stringsAsFactors = F)
info = info[c(8:20),]

m = match(info$ID,names(rm1))
rm2 = rm1[,m]

rm1 = rm2

sampleinfo = info
levels(factor(sampleinfo$Group))
[1] "Adult"
levels(factor(sampleinfo$BinSex))
[1] "Adult_F" "Adult_M"
table(colnames(rm2)==sampleinfo$ID)

TRUE 
  13 
matrix = rm2
pheno = info

Sex-specific Differentially Regulated Genes in Adult

Differential gene expresison analysis

attach(pheno)
design = model.matrix(as.formula("~ 0  + BinSex + Batch"))
detach(pheno)
design
   BinSexAdult_F BinSexAdult_M Batch
1              0             1     1
2              0             1     1
3              0             1     1
4              0             1     2
5              0             1     2
6              0             1     2
7              0             1     2
8              1             0     2
9              1             0     2
10             1             0     2
11             1             0     2
12             1             0     2
13             1             0     2
attr(,"assign")
[1] 1 1 2
attr(,"contrasts")
attr(,"contrasts")$BinSex
[1] "contr.treatment"
D = DGEList(counts=matrix)
D = calcNormFactors(D)
D = estimateGLMCommonDisp(D, design)
D = estimateGLMTagwiseDisp(D, design, prior.df = PRIOR)
fit = glmFit(D, design, prior.count = PRIOR)

Contrast = makeContrasts(FAdultvsMAdult = BinSexAdult_M - BinSexAdult_F,
                         levels=design)

res = list()
contrast.name = colnames(Contrast)

for(i in 1:length(contrast.name)){
  lrt = glmLRT(fit, contrast = Contrast[,i])   
  
  results = lrt$table
  disp = lrt$dispersion
  fitted.vals = lrt$fitted.values
  coefficients = lrt$coefficients
  
  results$adj.p.value = p.adjust(p = results$PValue, method = "fdr" )
  table(row.names(results) == row.names(fitted.vals))
  
  Name = row.names(results)
  res0 = cbind(Name, results, disp, fitted.vals, coefficients)
  res[[i]] = res0[order(res0$adj.p.value),]

  res[[i]]$Chr= gsub(".*_|:.*$", "", rownames(res[[i]]))
  
  res[[i]] = mutate(res[[i]], cs= ifelse(res[[i]]$adj.p.value <= 0.05 & res[[i]]$logFC <= 0 & res[[i]]$Chr=="X", "tan2",
                                         ifelse(res[[i]]$adj.p.value <= 0.05 & res[[i]]$logFC <= 0 & res[[i]]$Chr=="Y", "tan2", 
                                                ifelse(res[[i]]$adj.p.value <= 0.05 & res[[i]]$logFC >= 0 & res[[i]]$Chr=="Y", "tan2",
                                                       ifelse(res[[i]]$adj.p.value <= 0.05 & res[[i]]$logFC >= 0 & res[[i]]$Chr=="X", "tan2",
                                                              ifelse(res[[i]]$adj.p.value <= 0.05 & res[[i]]$logFC >= 0 ,"dodgerblue1",
                                                                     ifelse(res[[i]]$adj.p.value <= 0.05 & res[[i]]$logFC <= 0 , "deeppink1", "grey80")))))))
  
  mxFDR = res[[i]][res[[i]]$adj.p.value <= FDR,]
  mxFDR_Up = mxFDR[mxFDR$logFC>0,]
  mxFDR_Dn = mxFDR[mxFDR$logFC<0,]
  
  res[[i]]= mutate(res[[i]], FDR= nrow(mxFDR))
  res[[i]]= mutate(res[[i]], FDRup= nrow(mxFDR_Up))
  res[[i]]= mutate(res[[i]], FDRdn= nrow(mxFDR_Dn))

  
}

for(i in 1:length(contrast.name)){
  print(contrast.name[i])
  print(table(res[[i]]$adj.p.value < 0.05))
}
[1] "FAdultvsMAdult"

FALSE  TRUE 
97482   288 
par(mfrow=c(1,1))

for(i in 1:length(contrast.name)){

  plot(res[[i]]$logCPM, res[[i]]$logFC, pch=20, cex=1, col=res[[i]]$cs, 
        xlab = "logCPM", ylab = "logFC",
        main = paste0(contrast.name[i], 
                      "\nFDR=0.05, N=", res[[i]][1,ncol(res[[i]])-2], 
                      "\nUp=",res[[i]][1,ncol(res[[i]])-1],", Dn=",res[[i]][1,ncol(res[[i]])]))
}

Genome Feature of Peaks Enriched in Female or Male

Select peaks with p<=0.01

#!/bin/bash

set -x


#Create sets of foreground regions in bed format
for XLS in *xls ; do

  UP=$XLS.up.bed
  DN=$XLS.dn.bed

  awk ' $5<0.01 && $2>0 {print $1"\t"$1}' $XLS \
  | cut -d '_' -f2- | sed 's/:/\t/' | sed 's/-/\t/' \
  | bedtools sort > $UP

  awk ' $5<0.01 && $2<0 {print $1"\t"$1}' $XLS \
  | cut -d '_' -f2- | sed 's/:/\t/' | sed 's/-/\t/' \
  | bedtools sort > $DN
done

#Create a set of background regions from those not changing in any comparison
BG=$XLS.bg.bed
tail -qn +2 *xls \
| awk '$5>0.1 {print $1}' \
| sort | uniq -c \
| cut -d '_' -f2- | tr ':-' '\t' \
| bedtools sort > $BG

Homer annotate peaks

#!/bin/bash
set -x

REF=/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/refgenome/Homo_sapiens.GRCh38.96.gtf

#PATH=$PATH:/group/card2/Evangelyn_Sim/NGS/app/homer/.//bin/

for BED in *.up.bed *.dn.bed ; do

  OUT=$BED.homeranno.txt
  mkdir go/$BED
  annotatePeaks.pl $BED hg38 -gtf $REF -go go/$BED -annStats $BED.stats.txt > $OUT

done

Plot Homer peak annotation results

files = list.files(path = "/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/20180726_hATACseq_MF/R/5.pks.mg.mapq30.rmBL.q30/6.pkstats/p001_MvF_20200624", pattern = ".stats.txt", full.names = T)
mx = lapply(files, read.delim, header=T, stringsAsFactors = F)

for(i in 1:length(mx)){
  mx[[i]] = mx[[i]][c(1:5),]
  mx[[i]]$Number.of.peaks = as.numeric(mx[[i]]$Number.of.peaks)
  mx[[i]]$totalpeaks = sum(mx[[i]]$Number.of.peaks)
  mx[[i]]$percentage = round(mx[[i]]$Number.of.peaks/sum(mx[[i]]$Number.of.peaks) *100, digits = 2)
  print(PieDonut(mx[[i]],aes(Annotation,count=Number.of.peaks),r0=0.5,start=3*pi/2,labelpositionThreshold=0.1, showPieName = T, showDonutName = T,
                 title = gsub("/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/20180726_hATACseq_MF/R/5.pks.mg.mapq30.rmBL.q30/6.pkstats/p001_MvF_20200624/edgeR_ATAC_pks_all_hum_MvF_|.xls|.bed.stats.txt", "", files[[i]])))
}

Transcription Factor Motif Enrichment Analysis of Peaks Enriched in Female or Male by Homer

#!/bin/bash

set -x

CWD=/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/20180726_hATACseq_MF/R/5.pks.mg.mapq30.rmBL.q30/7.homer/p001_all
echo $CWD
REF=/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/refgenome/Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa

#PATH=$PATH:/home/esim/software/.//bin/

#Create sets of foreground regions in bed format
for XLS in *xls ; do

 UP=$XLS.up.bed
 DN=$XLS.dn.bed

  awk ' $5<0.01 && $2>0 {print $1"\t"$1}' $XLS \
  | cut -d '_' -f2- | sed 's/:/\t/' | sed 's/-/\t/' \
  | bedtools sort > $UP

  awk ' $5<0.01 && $2<0 {print $1"\t"$1}' $XLS \
  | cut -d '_' -f2- | sed 's/:/\t/' | sed 's/-/\t/' \
  | bedtools sort > $DN
done

#Create a set of background regions from those not changing in any comparison
BG=$XLS.bg.bed
tail -qn +2 *xls \
| awk '$5>0.1 {print $1}' \
| sort | uniq -c \
| awk '$1~/6/ {print $2}' \
| cut -d '_' -f2- | tr ':-' '\t' \
| bedtools sort > $BG

cd $CWD

#Call Homer enriched motifs with default background, then with ATAC peak BG
for FG in *up.bed *dn.bed ; do
 cd $CWD
 BED=$CWD/$FG

 #find enriched motifs
  findMotifsGenome.pl $FG $REF $FG.df.out -p 10 -keepFiles

  cd $FG.df.out
  rm -rf instances
  mkdir instances
  cd instances

  for i in ../homerResults/motif*.motif ; do
    BASE=`basename $i`
    mkdir $BASE
    findMotifsGenome.pl $BED $REF $BASE -find $i | sort -k6gr > $BASE/$BASE &
  done

 cd $CWD
done
wait


cd $CWD

#Call Homer enriched motifs with ATAC peak BG
for FG in *up.bed *dn.bed ; do
  cd $CWD
  BED=$CWD/$FG

  #find enriched motifs
  findMotifsGenome.pl $FG $REF $FG.out -bg $BG -p 10 -keepFiles

  #find instances of enriched motifs
  cd $FG.out
  rm -rf instances
  mkdir instances
  cd instances

  for i in ../homerResults/motif*.motif ; do
    BASE=`basename $i`
    mkdir $BASE
    findMotifsGenome.pl $BED $REF $BASE -find $i | sort -k6gr > $BASE/$BASE &
  done ; wait

  cd $CWD
done




for MOTIF in `find . | grep instances | grep motif$` ; do
  OUT=$MOTIF.bed
  awk '{print $1,$2,length($3)}' $MOTIF \
  | grep -v PositionID | cut -d '_' -f2 \
  | tr ':' '\t' | sed 's/-/\t/' \
  | awk '{printf "%s\t%.0f\t%.0f\n", $1,(($2+$3)/2)+$4-10,(($2+$3)/2)+$4+10}' > $OUT
done
mx1 = read.delim("/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/20180726_hATACseq_MF/R/5.pks.mg.mapq30.rmBL.q30/7.homer/p001_human_MvF_20200624/edgeR_ATAC_pks_all_hum_MvF_FAdultvsMAdult.xls.up.bed.df.out/knownResults.txt", header=TRUE, sep = "\t")
colnames(mx1) = c("Motif.Name","Consensus","P.value","Log.P.value",
                  "q.value..Benjamini.","Peak.number","Peak.number.with.Motif", 
                  "Background.number", "Background.number.with.Motif")
mx1$TF = gsub("[(].*", "", mx1$Motif.Name)
mx1$TF = gsub("/.*", "", mx1$TF)
mx1$TF = gsub("PGR","PR", mx1$TF)
mx1$Log.P.value = -(mx1$Log.P.value)
mx1 = mx1[!duplicated(mx1$TF),]
mx1 = mx1[c(1:10),]
mx1 = mx1[order(mx1$Log.P.value),]
mx1$TF = toupper(mx1$TF)
mx1$TF = factor(mx1$TF, levels = mx1$TF) 

s1 = ggplot(mx1, aes(TF, Log.P.value, color=Log.P.value))+
  geom_bar(stat = "identity", fill="white", color="dodgerblue1") +
  labs(title = "TF enriched in male")+
  theme_minimal()+
  coord_flip()


mx2 = read.delim("/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/20180726_hATACseq_MF/R/5.pks.mg.mapq30.rmBL.q30/7.homer/p001_human_MvF_20200624/edgeR_ATAC_pks_all_hum_MvF_FAdultvsMAdult.xls.dn.bed.df.out/knownResults.txt", header=TRUE, sep = "\t")
colnames(mx2) = c("Motif.Name","Consensus","P.value","Log.P.value",
                  "q.value..Benjamini.","Peak.number","Peak.number.with.Motif", 
                  "Background.number", "Background.number.with.Motif")
mx2$TF = gsub("[(].*", "", mx2$Motif.Name)
mx2$TF = gsub("/.*", "", mx2$TF)
mx2$Log.P.value = -(mx2$Log.P.value)
mx2 = mx2[!duplicated(mx2$TF),]
mx2 = mx2[c(1:10),]
mx2 = mx2[order(mx2$Log.P.value),]
mx2$TF = toupper(mx2$TF)
mx2$TF = factor(mx2$TF, levels = mx2$TF) 

s2 = ggplot(mx2, aes(TF, Log.P.value, color=Log.P.value))+
  geom_bar(stat = "identity", fill="white", color="deeppink1") +
  labs(title = "TF enriched in female")+
  theme_minimal()+
  coord_flip()
multi = arrangeGrob(s1,s2,
                    ncol = 2, nrow = 1)
plot = as_ggplot(multi)

plot


sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS:   /hpc/software/installed/R/3.6.1/lib64/R/lib/libRblas.so
LAPACK: /hpc/software/installed/R/3.6.1/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] RColorBrewer_1.1-2 ggpubr_0.4.0       cowplot_1.0.0      gridExtra_2.3     
 [5] extrafont_0.17     waffle_0.7.0       webr_0.1.5         moonBook_0.2.3    
 [9] ggplot2_3.3.2      dplyr_1.0.2        edgeR_3.26.8       limma_3.40.6      
[13] workflowr_1.6.2   

loaded via a namespace (and not attached):
  [1] nlme_3.1-150       fs_1.5.0           insight_0.9.0     
  [4] rprojroot_1.3-2    tools_3.6.1        backports_1.1.10  
  [7] R6_2.5.0           DT_0.14            sjlabelled_1.1.6  
 [10] colorspace_1.4-1   withr_2.3.0        tidyselect_1.1.0  
 [13] mnormt_1.5-6       extrafontdb_1.0    curl_4.3          
 [16] compiler_3.6.1     git2r_0.27.1       flextable_0.5.10  
 [19] xml2_1.3.2         officer_0.3.12     labeling_0.4.2    
 [22] scales_1.1.1       lmtest_0.9-38      psych_1.9.12.31   
 [25] readr_1.4.0        systemfonts_0.2.3  stringr_1.4.0     
 [28] digest_0.6.27      foreign_0.8-71     editData_0.1.2    
 [31] rmarkdown_2.5      rio_0.5.16         base64enc_0.1-3   
 [34] pkgconfig_2.0.3    htmltools_0.5.0    fastmap_1.0.1     
 [37] highr_0.8          rvg_0.2.5          htmlwidgets_1.5.2 
 [40] rlang_0.4.7        readxl_1.3.1       rstudioapi_0.11   
 [43] shiny_1.5.0        farver_2.0.3       generics_0.1.0    
 [46] zoo_1.8-8          jsonlite_1.7.0     zip_2.1.1         
 [49] car_3.0-10         magrittr_1.5       Rcpp_1.0.5        
 [52] munsell_0.5.0      abind_1.4-5        gdtools_0.2.2     
 [55] lifecycle_0.2.0    stringi_1.5.3      whisker_0.4       
 [58] yaml_2.2.1         carData_3.0-4      MASS_7.3-51.6     
 [61] parallel_3.6.1     promises_1.1.1     sjmisc_2.8.5      
 [64] forcats_0.5.0      crayon_1.3.4       miniUI_0.1.1.1    
 [67] lattice_0.20-41    haven_2.3.1        hms_0.5.3         
 [70] locfit_1.5-9.4     knitr_1.30         pillar_1.4.6      
 [73] uuid_0.1-4         ggsignif_0.6.0     glue_1.4.2        
 [76] evaluate_0.14      data.table_1.13.2  vcd_1.4-8         
 [79] vctrs_0.3.2        tweenr_1.0.1       httpuv_1.5.4      
 [82] Rttf2pt1_1.3.8     cellranger_1.1.0   gtable_0.3.0      
 [85] purrr_0.3.4        polyclip_1.10-0    tidyr_1.1.2       
 [88] xfun_0.18          ggforce_0.3.2      openxlsx_4.2.3    
 [91] mime_0.9           xtable_1.8-4       broom_0.7.0       
 [94] rstatix_0.6.0      later_1.1.0.1      tibble_3.0.3      
 [97] shinyWidgets_0.5.4 rrtable_0.2.1      ellipsis_0.3.1    
[100] ztable_0.2.0       devEMF_3.8