Last updated: 2021-02-19
Checks: 6 1
Knit directory: Human_Development_ATACseq_bulk/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210216)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/GITHUB/Human_Development_ATACseq_bulk/output/humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.all.fix_filt.csv | output/humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.all.fix_filt.csv |
/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/GITHUB/Human_Development_ATACseq_bulk/output/ATACseq_samplesheet.txt | output/ATACseq_samplesheet.txt |
/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/GITHUB/Human_Development_ATACseq_bulk/output/logCPM_humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.all.fix_filt.csv | output/logCPM_humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.all.fix_filt.csv |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 294d830. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: *.noXYMT.bed.tidy.bed
Untracked: *xls.bg.bed
Untracked: *xls.dn.bed
Untracked: *xls.up.bed
Untracked: Development_noXY.jn.rnk
Untracked: FetalvsYoung_noXY.jn.rnk
Untracked: Homo_sapiens.GRCh38.96.fulllength.saf
Untracked: YoungvsAdult_noXY.jn.rnk
Untracked: analysis/*.dn.bed.homeranno.txt
Untracked: analysis/*.up.bed.homeranno.txt
Untracked: analysis/00.WorkFlowR_setting.R
Untracked: code/EnDrich.R
Untracked: code/EnDrichProc_Development_noXY.R
Untracked: code/EnDrichProc_FetalvsYoung_noXY.R
Untracked: code/EnDrichProc_YoungvsAdult_noXY.R
Untracked: header.sam
Untracked: humanATAC*bed.saf
Untracked: humanATAC*bed.saf.pe.q30.mx
Untracked: humanATAC*bed.saf.pe.q30.mx.all
Untracked: humanATAC*bed.saf.pe.q30.mx.all.fix
Untracked: humanATAC*bed.saf.pe.q30.mx.chr
Untracked: humanATAC*bed.saf.pe.q30.mx.fix
Untracked: humanATAC*bed.saf.pe.q30.mx.hum.fix
Untracked: output/20190801_ATAC_samplesheet.txt
Untracked: output/ATACseq_samplesheet.txt
Untracked: output/atac_hum_tss_pe_mapk30_q30.mx.all_unfiltered.csv
Untracked: output/atac_hum_tss_pe_mapk30_q30.mx.chr
Untracked: output/atac_hum_tss_pe_mapk30_q30.mx.hum.fix_filt.csv
Untracked: output/humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.MvsF.fix_filt.csv
Untracked: output/humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.all.fix_filt.csv
Untracked: output/humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.all_unfiltered.csv
Untracked: output/humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.hum.fix_filt.csv
Untracked: output/logCPM_humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.all.fix_filt.csv
Unstaged changes:
Modified: analysis/about.Rmd
Modified: analysis/index.Rmd
Modified: analysis/license.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/04.QC_and_CPM_Peaks.Rmd
) and HTML (docs/04.QC_and_CPM_Peaks.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 294d830 | evangelynsim | 2021-02-19 | wflow_publish(c(“analysis/01.Generate_reference_genome.Rmd”, |
In the GEO submission, 4 processed files (peaks) were uploaded.
They have been uploaded in the /output folder and will be used below to generate different figures.
library(edgeR)
Loading required package: limma
library(limma)
library(Glimma)
library(gplots)
Attaching package: 'gplots'
The following object is masked from 'package:stats':
lowess
rm1 <- read.csv("/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/GITHUB/Human_Development_ATACseq_bulk/output/humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.all.fix_filt.csv", row.names = 1)
info = read.delim("/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/GITHUB/Human_Development_ATACseq_bulk/output/ATACseq_samplesheet.txt", header = TRUE, sep = "\t")
m = match(info$ID,names(rm1))
rm2 = rm1[,m]
rm1 = rm2
mycpm = cpm(rm1)
summary(mycpm)
Fetal1 Fetal2 Fetal3 Young1
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
1st Qu.: 3.148 1st Qu.: 2.700 1st Qu.: 3.038 1st Qu.: 2.512
Median : 5.438 Median : 4.801 Median : 5.298 Median : 4.742
Mean : 10.230 Mean : 10.230 Mean : 10.230 Mean : 10.230
3rd Qu.: 11.735 3rd Qu.: 11.202 3rd Qu.: 11.585 3rd Qu.: 11.556
Max. :2027.691 Max. :2324.248 Max. :1723.871 Max. :1113.559
Young2 Young3 Young4 Adult1
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
1st Qu.: 3.235 1st Qu.: 2.798 1st Qu.: 2.379 1st Qu.: 2.075
Median : 5.475 Median : 4.959 Median : 4.559 Median : 4.018
Mean : 10.230 Mean : 10.230 Mean : 10.230 Mean : 10.230
3rd Qu.: 11.780 3rd Qu.: 11.508 3rd Qu.: 11.365 3rd Qu.: 10.508
Max. :2363.268 Max. :2413.537 Max. :1304.316 Max. :995.980
Adult2 Adult3 Adult4 Adult5
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
1st Qu.: 2.575 1st Qu.: 3.766 1st Qu.: 2.536 1st Qu.: 2.686
Median : 4.875 Median : 6.162 Median : 4.590 Median : 4.667
Mean : 10.230 Mean : 10.230 Mean : 10.230 Mean : 10.230
3rd Qu.: 11.619 3rd Qu.: 12.051 3rd Qu.: 11.017 3rd Qu.: 10.963
Max. :1665.484 Max. :4331.669 Max. :968.910 Max. :1521.759
Adult6 Adult7 Adult8 Adult9
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
1st Qu.: 2.126 1st Qu.: 2.006 1st Qu.: 2.509 1st Qu.: 2.030
Median : 4.285 Median : 4.043 Median : 4.460 Median : 4.228
Mean : 10.230 Mean : 10.230 Mean : 10.230 Mean : 10.230
3rd Qu.: 10.953 3rd Qu.: 10.707 3rd Qu.: 10.872 3rd Qu.: 11.154
Max. :1282.877 Max. :834.229 Max. :1254.172 Max. :1053.526
Adult10 Adult11 Adult12 Adult13
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
1st Qu.: 2.337 1st Qu.: 2.640 1st Qu.: 2.332 1st Qu.: 2.963
Median : 4.347 Median : 4.675 Median : 4.296 Median : 5.024
Mean : 10.230 Mean : 10.230 Mean : 10.230 Mean : 10.230
3rd Qu.: 10.704 3rd Qu.: 11.037 3rd Qu.: 10.616 3rd Qu.: 11.142
Max. :1948.646 Max. :1283.103 Max. :2013.372 Max. :2154.891
hiPSCCM1 hiPSCCM2 hiPSCCM3 hiPSCCM4
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000
1st Qu.: 4.511 1st Qu.: 4.616 1st Qu.: 3.846 1st Qu.: 4.666
Median : 6.626 Median : 6.653 Median : 6.025 Median : 6.820
Mean : 10.230 Mean : 10.230 Mean : 10.230 Mean : 10.230
3rd Qu.: 11.843 3rd Qu.: 11.676 3rd Qu.: 11.409 3rd Qu.: 11.666
Max. :7495.477 Max. :9096.587 Max. :5379.331 Max. :9059.116
hiPSCCM5 hiPSCCM6 hiPSCCM7
Min. : 0.000 Min. : 0.000 Min. : 0.000
1st Qu.: 4.689 1st Qu.: 4.010 1st Qu.: 4.427
Median : 7.034 Median : 6.626 Median : 6.788
Mean : 10.230 Mean : 10.230 Mean : 10.230
3rd Qu.: 11.904 3rd Qu.: 11.683 3rd Qu.: 11.804
Max. :6804.441 Max. :5309.122 Max. :5240.105
x <- DGEList(rm1)
names(x)
[1] "counts" "samples"
logcountsx = cpm(x, log = T)
write.csv(logcountsx, file = "/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/GITHUB/Human_Development_ATACseq_bulk/output/logCPM_humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.all.fix_filt.csv")
barplot(x$samples$lib.size, names=colnames(x), las=2, col = c("turquoise1","maroon1","bisque1","purple")[info$Group], main = "Library size")
boxplot(logcountsx, xlab="", ylab="Log2 counts per million", las=2, col = c("turquoise1","maroon1","bisque1","purple")[info$Group])
abline(h=median(logcountsx), col="navy")
sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS: /hpc/software/installed/R/3.6.1/lib64/R/lib/libRblas.so
LAPACK: /hpc/software/installed/R/3.6.1/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] gplots_3.1.0 Glimma_1.12.0 edgeR_3.26.8 limma_3.40.6
[5] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] Rcpp_1.0.5 pillar_1.4.6 compiler_3.6.1 later_1.1.0.1
[5] git2r_0.27.1 highr_0.8 bitops_1.0-6 tools_3.6.1
[9] digest_0.6.27 jsonlite_1.7.0 evaluate_0.14 lifecycle_0.2.0
[13] tibble_3.0.3 lattice_0.20-41 pkgconfig_2.0.3 rlang_0.4.7
[17] rstudioapi_0.11 yaml_2.2.1 xfun_0.18 stringr_1.4.0
[21] knitr_1.30 caTools_1.18.0 gtools_3.8.2 fs_1.5.0
[25] vctrs_0.3.2 locfit_1.5-9.4 rprojroot_1.3-2 grid_3.6.1
[29] glue_1.4.2 R6_2.5.0 rmarkdown_2.5 magrittr_1.5
[33] whisker_0.4 backports_1.1.10 promises_1.1.1 ellipsis_0.3.1
[37] htmltools_0.5.0 httpuv_1.5.4 KernSmooth_2.23-17 stringi_1.5.3
[41] crayon_1.3.4