Last updated: 2021-02-19

Checks: 7 0

Knit directory: Human_Development_ATACseq_bulk/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210216) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 294d830. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  *.noXYMT.bed.tidy.bed
    Untracked:  *xls.bg.bed
    Untracked:  *xls.dn.bed
    Untracked:  *xls.up.bed
    Untracked:  Development_noXY.jn.rnk
    Untracked:  FetalvsYoung_noXY.jn.rnk
    Untracked:  Homo_sapiens.GRCh38.96.fulllength.saf
    Untracked:  YoungvsAdult_noXY.jn.rnk
    Untracked:  analysis/*.dn.bed.homeranno.txt
    Untracked:  analysis/*.up.bed.homeranno.txt
    Untracked:  analysis/00.WorkFlowR_setting.R
    Untracked:  code/EnDrich.R
    Untracked:  code/EnDrichProc_Development_noXY.R
    Untracked:  code/EnDrichProc_FetalvsYoung_noXY.R
    Untracked:  code/EnDrichProc_YoungvsAdult_noXY.R
    Untracked:  header.sam
    Untracked:  humanATAC*bed.saf
    Untracked:  humanATAC*bed.saf.pe.q30.mx
    Untracked:  humanATAC*bed.saf.pe.q30.mx.all
    Untracked:  humanATAC*bed.saf.pe.q30.mx.all.fix
    Untracked:  humanATAC*bed.saf.pe.q30.mx.chr
    Untracked:  humanATAC*bed.saf.pe.q30.mx.fix
    Untracked:  humanATAC*bed.saf.pe.q30.mx.hum.fix
    Untracked:  output/20190801_ATAC_samplesheet.txt
    Untracked:  output/ATACseq_samplesheet.txt
    Untracked:  output/atac_hum_tss_pe_mapk30_q30.mx.all_unfiltered.csv
    Untracked:  output/atac_hum_tss_pe_mapk30_q30.mx.chr
    Untracked:  output/atac_hum_tss_pe_mapk30_q30.mx.hum.fix_filt.csv
    Untracked:  output/humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.MvsF.fix_filt.csv
    Untracked:  output/humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.all.fix_filt.csv
    Untracked:  output/humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.all_unfiltered.csv
    Untracked:  output/humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.hum.fix_filt.csv
    Untracked:  output/logCPM_humanATAC_peaks_cov2_rmBL.bed.saf.pe.q30.mx.all.fix_filt.csv

Unstaged changes:
    Modified:   analysis/about.Rmd
    Modified:   analysis/index.Rmd
    Modified:   analysis/license.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/02.Primary_Analysis.Rmd) and HTML (docs/02.Primary_Analysis.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 294d830 evangelynsim 2021-02-19 wflow_publish(c(“analysis/01.Generate_reference_genome.Rmd”,

Introduction

Following sequencing and obtaining .fastq.gz file, the first step is to perform trimming and mapping of the sequencing data to generate bam files. All these steps were performed using bash code.

Bam files were then used for removal of duplicated and low quality (<Q30) reads and subsequently subjected to read counting to generate a count matrix.

Human developmental bulk ATAC-seq were performed using paired-end sequencing method and below are the scripts for primary processing of paired-end sequencing read.

Used libraries and functions

  • skewer/0.2.2
  • bwa/0.7.17
  • samtools/1.8
  • parallel
  • subread/1.5.0
  • bedtools/2.27.1
  • macs14
  • bedops/2.4.20

1. Basic processing of all samples

Trimming of sequencing read

#!/bin/bash

# function to run skewer quality trimming
runskew(){
FQZ1=$1
FQZ2=`echo $FQZ1 | sed 's/_R1.fastq.gz/_R2.fastq.gz/'`
skewer -t 8 -q 20 $FQZ1 $FQZ2
}
export -f runskew

# actually run skewer
parallel -j3 runskew ::: *_R1.fastq.gz

Mapping of Skewer trimmed .fastq to mouse reference genome using BWA

runbwamempe() {
FQ1=$1
FQ2=`echo $FQ1 | sed 's/R1.fastq-trimmed-pair1.fastq/R1.fastq-trimmed-pair2.fastq/'`
BASE=`echo $FQ1 | sed 's/_R1.fastq-trimmed-pair1.fastq//'`

REF=/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/refgenome/Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa

bwa mem -t 20 $REF $FQ1 $FQ2 \
| samtools view -uSh - \
| samtools sort -@10 -o ${BASE}.sort.bam
samtools index ${BASE}.sort.bam

samtools flagstat ${BASE}.sort.bam > ${BASE}.sort.bam.stats
}
export -f runbwamempe


# actually run bwa pe
ls *_R1.fastq-trimmed-pair1.fastq | parallel -u -j4 runbwamempe {}

Remove duplicated reads

#!/bin/bash

nodup(){
BAM=$1
OUT=`echo $BAM | sed 's/.bam/_nodup.bam/'`
samtools rmdup $BAM $OUT
}
export -f nodup
parallel nodup ::: `ls *bam | grep -v dup`

Merge replicated .bam files.

Make a directory called “merged” and ln all .bam files to the folder and perform the following.

#!/bin/bash

samtools view -H `ls *bam | head -1` > header.sam
for BASE in `ls *bam | cut -d '_' -f1 | sort -u ` ; do
  rm $BASE.mg.bam
  samtools merge -h header.sam $BASE.mg.bam *${BASE}*bam &
done
wait
ls: cannot access *bam: No such file or directory
bash: line 2: samtools: command not found
ls: cannot access *bam: No such file or directory

Remove low quality (Q<30) sequencing reads

#!/bin/bash

# function to run bwa in paired end mode
runsamtoolsmapq() {
BAM=$1

NAME=`echo ${BAM} | sed 's/.bam//'`
REF=/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/refgenome/Homo_sapiens.GRCh38.dna_sm.primary_assembly.fa

samtools view -q 30 -f 0x2 -b -h ${BAM} > ${NAME}.mapq30.bam

wait

samtools index ${NAME}.mapq30.bam
samtools flagstat ${BAM}.mapq30.bam > ${BAM}.mapq30.bam.flagstats
samtools idxstats ${BAM}.mapq30.bam > ${BAM}.mapq30.bam.idxstats

}
export -f runsamtoolsmapq


# actually run runsamtoolsmapq pe 
ls *.bam | parallel -u -j5 runsamtoolsmapq {}

Investigate the distribution of reads on different chromosome

#!/bin/bash

cntrds(){
BAM=$1
samtools view -q30 $BAM | cut -f3 | sort -T .| uniq -c | sed "s/^/${BAM}/"
}
export -f cntrds

ls *bam | parallel cntrds {} | tee -a read_counts2_q30.txt

2. 1kbp +/- TSS

Counting reads from bam files across human reference genome for 1kbp +/- TSS to identify associated genes

#!/bin/bash

SAF=/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/refgenome/tss_1kbp.saf
OUTPE=atac_hum_tss_pe_mapk30_q30.mx

#featureCounts -p -Q 30 -T 20 -s 0 -a $SAF -F SAF -o $OUTPE *bam

Tidy 1kbp +/- TSS count matrix


#!/bin/bash

for MX in `ls *mx` ; do
   sed 1d $MX | sed 's/.mg.mapq30.bam//g' > $MX.all
   sed 1d $MX | cut -f1-6 | sed 's/.mg.mapq30.bam//g' > $MX.chr
   sed 1d $MX | cut -f1,7- | sed 's/.mg.mapq30.bam//g' > $MX.all.fix
   sed 1d $MX | cut -f1,7-26 | sed 's/.mg.mapq30.bam//g' > $MX.hum.fix
   
done
wait

Filter out low counts genes from 1kbp +/- TSS count matrix

Filtering out low counts genes by running the following filter.sh as

bash filter.sh hrna_dev_mf_fulllen_se_strrev_q30.mx.all.fix

filter.sh

head -1 $1 > ${1}_filt
awk '{
  min = max = sum = $2;       # Initialize to the first value (2nd field)
  sum2 = $2 * $2              # Running sum of squares
  for (n=3; n <= NF; n++) {   # Process each value on the line
    if ($n < min) min = $n    # Current minimum
    if ($n > max) max = $n    # Current maximum
    sum += $n;                # Running sum of values
    sum2 += $n * $n           # Running sum of squares
  }
  print sum/(NF-1) ;
}' $1 > avg
paste avg $1 | awk '$1 >= 10' | cut -f2- | tr ' ' '\t' >> ${1}_filt
rm avg

3. Peaks

Peak call of individual sample

#!/bin/bash
BAMS='*bam'
BASENAME=humanATAC
PEAKBED=${BASENAME}_peaks.bed
PEAKSAF=${BASENAME}_peaks.saf
OUT=${BASENAME}_pks.txt
MX=${BASENAME}_pks_se.mx

PATH=$PATH:/usr/local/installed/macs/1.4.2-1/python-2.7.11/.//bin/

ls $BAMS | parallel macs14 -t {} -n {}_macs

done

exit

Curate peaks that exist in more than 2 or 3 samples to form a peak set

for BED in *peaks.bed ; do
 awk '{OFS="\t"} {if ($2<1) print $1,1,$3 ; else print $0 }' $BED | awk 'NF=="5"'> tmp
 mv tmp $BED
done

rm humanATAC_peaks_cov*.bed
for COV in 2 3 ; do
  bedtools multiinter -i *_macs_peaks.bed \
 | cut -f-4 | awk -v C=$COV '$4>=C && NF==4' \
 | bedtools merge -i - > humanATAC_peaks_cov${COV}.bed
done

exit

Remove blacklisted peaks

#!/bin/bash

wget https://github.com/Boyle-Lab/Blacklist/blob/master/lists/Blacklist_v1/hg38-blacklist.bed.gz

cat hg38.blacklist.bed | sed 's/chr//' > hg38.blacklist.tidy.bed

BL=/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/refgenome/hg38.blacklist.tidy.bed

bedops -n -1 humanATAC_peaks_cov2.bed $BL  > humanATAC_peaks_cov2_rmBL.bed

bedops -n -1 humanATAC_peaks_cov3.bed $BL  > humanATAC_peaks_cov3_rmBL.bed

Count individual sample to the curated peak set

#!/bin/bash

for BED in humanATAC*bed ; do

  SAF=$BED.saf
  OUT=$SAF.pe.q30.mx
  awk '{OFS="\t"} {print "PK"NR"_"$1":"$2"-"$3,$1,$2,$3,"+"}' $BED > $SAF
  ( featureCounts -p -Q 30 -T 20 -s 0 -a $SAF -F SAF -o $OUT *bam
  sed 1d $OUT | cut -f1,7- > tmp ; mv tmp $OUT ) &

done
awk: fatal: cannot open file `humanATAC*bed' for reading (No such file or directory)
bash: line 7: featureCounts: command not found

Tidy peak count matrix

#!/bin/bash

for MX in `ls *mx` ; do
   cat $MX | sed 's/.mg.mapq30.bam//g'  > $MX.fix
   cat $MX | cut -f1-21 | sed 's/.mg.mapq30.bam//g' > $MX.hum.fix
done
wait

Filter out low counts genes from peak count matrix

Filtering out low counts genes by running the following filter.sh as

bash filter.sh hrna_dev_mf_fulllen_se_strrev_q30.mx.all.fix

filter.sh

head -1 $1 > ${1}_filt
awk '{
  min = max = sum = $2;       # Initialize to the first value (2nd field)
  sum2 = $2 * $2              # Running sum of squares
  for (n=3; n <= NF; n++) {   # Process each value on the line
    if ($n < min) min = $n    # Current minimum
    if ($n > max) max = $n    # Current maximum
    sum += $n;                # Running sum of values
    sum2 += $n * $n           # Running sum of squares
  }
  print sum/(NF-1) ;
}' $1 > avg
paste avg $1 | awk '$1 >= 10' | cut -f2- | tr ' ' '\t' >> ${1}_filt
rm avg

4. Group analysis

Merge .bam files from the same group for transcription factor motif analysis and IGV visualization of peaks

#!/bin/bash

# mkdir called merged then ln all *.bam to the folder

# then run samtools merge on the bam files
samtools view -H `ls *bam | head -1` > header.sam
for BASE in `ls *bam | cut -d '_' -f1 | sort -u ` ; do
  rm $BASE.mg.bam
  samtools merge -h header.sam $BASE.mg.bam ${BASE}*bam &
done
wait
ls: cannot access *bam: No such file or directory
bash: line 5: samtools: command not found
ls: cannot access *bam: No such file or directory

Index merged .bam files

#!/bin/bash

# function to run bwa in paired end mode
runbamindex() {
BAM=$1

samtools index $BAM
}
export -f runbamindex

ls *.bam | parallel -u -j4 runbamindex {}

MACS peak calling and then remove blacklisted peaks (method same as above)

### Remove blacklisted peaks

#!/bin/bash

BL=/group/card2/Evangelyn_Sim/Transcriptome_chromatin_human/Sequencing_ATAC_RNA/refgenome/hg38.blacklist.tidy.bed

for BED in *_macs_peaks.bed ; do
   bedops -n -1 $BED $BL  > $BED.rmBL.bed
done

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS:   /hpc/software/installed/R/3.6.1/lib64/R/lib/libRblas.so
LAPACK: /hpc/software/installed/R/3.6.1/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.5       rstudioapi_0.11  whisker_0.4      knitr_1.30      
 [5] magrittr_1.5     R6_2.5.0         rlang_0.4.7      stringr_1.4.0   
 [9] tools_3.6.1      xfun_0.18        git2r_0.27.1     htmltools_0.5.0 
[13] ellipsis_0.3.1   rprojroot_1.3-2  yaml_2.2.1       digest_0.6.27   
[17] tibble_3.0.3     lifecycle_0.2.0  crayon_1.3.4     later_1.1.0.1   
[21] vctrs_0.3.2      promises_1.1.1   fs_1.5.0         glue_1.4.2      
[25] evaluate_0.14    rmarkdown_2.5    stringi_1.5.3    compiler_3.6.1  
[29] pillar_1.4.6     backports_1.1.10 httpuv_1.5.4     pkgconfig_2.0.3